

DPP – 1

Video Solution on Website:-		https://physics	saholics.com/ho	me/courseDetails/46
Video Solution	n on YouTube:-	https://youtu.	be/1yehhC5Dbs	U
Written Solution on Website:-		https://physicsaholics.com/note/notesDetalis/19		
Q 1.	Which of the followi in their ground states (a) radius of the orbit (b) speed of the electr (c) energy of the atom (d) orbital angular mo	? ron n	e same for all hydroge	n-like atoms and ions
Q 2.	The radius of electron third orbit will be- (a) 3R (b) 2.2	(7 \\\\	is R. The radius of the
Q 3.	The ratio of the area ground level, for hyd (a) 2 : 1		ed state of electron to to (c) 8 : 1	the area of orbit of (d) 16 : 1
Q 4.	The ratio of velocitie respectively will be – (a) 6 : 3 : 1	s of electron in H-atc (b) $3:2:1$	om in its first, second $(c) 6:3:2$	& third orbit (d) 1 : 3 : 6
Q 5.	The kinetic energy of (a) 13.6 eV	f an electron in secon (b) 6.8 eV	d Bohr orbit of hydro (c) 3.4 eV	gen atom will be - (d) 1.7 eV
Q.6	Total energy of electric (a) total energy of electric (b) total energy of electric (c) total energy of electric (d) total energy electri	ectron in 2nd orbit of ectron in 3rd orbit of ectron in 2nd orbit of	He ⁺ Li ⁺⁺	ual to the –
Q 7.	(s) of the following is hydrogen –	s (are) possible excite	ed state (s) for electron	
Q 8.		(b) – 6.8 eV of the hydrogen ato (b) 10.2 eV	(c) – 1.7 eV m in the first excited (c) 3.40 eV	(d) 13.6 eV state is – (d) 1.51 eV
Q 9.	As per Bohr model, t the ground state of do		· · ·	nove an electron from

(a) 1.51 (b) 13.6 (c) 40.8(d) 122.4

Q 10. When a hydrogen atom is raised from the ground state to an excited state -

- (a) the P.E. decreases and K.E. increases
- (b) the P.E. increases and K.E. decreases
- (c) both K.E. and P.E. increases
- (d) both K.E. and P.E. decrease
- Q 11. The angular momentum of an electron in a given orbit is J. Its kinetic energy will be -(b) $\frac{Jv}{r}$ (d) $\frac{J^2}{2\pi}$

(a)
$$\frac{1}{2} \frac{J^2}{mr^2}$$

(c) $\frac{J^2}{2m}$

- Q 12. From Bohr's theory the product of the radius and the velocity of the electron in different orbits is
 - (a) constant
 - (b) proportional to the square root of radius
 - (c) proportional to the radius
 - (d) proportional to the square of the radius
- Q 13. The angular momentum of electron in hydrogen atom is proportional to (a) √r (b) 1/r(c) r^2 (d) 1/√r
- Q 14. The electron in a hydrogen atom jumps from ground state to the higher energy state where its velocity is reduced to one-third its initial value. If the radius of the orbit in the ground state is r, the radius of new orbit will be -(c) $\frac{r}{3}$ $(d)\frac{r}{d}$ (a) 3r (b) 9r
- Which of the following products in a hydrogen atom are independent of the principal Q 15. quantum number n? The symbols have their usual meanings? (b) Er^2 (a) vn (c) En (d) vr

Answer Key

Q.1 d	Q.2 b	Q.3 d	Q.4 c	Q.5 c
Q.6 a	Q.7 a	Q.8 c	Q.9 d	Q.10 b
Q.11 a	Q.12 b	Q.13 a	Q.14 b	Q.15 a

× × ×	Interactiv Structured Live Tests Personal (
24 months No cost EMI		2.514	33/mo 56,000	>	
18 months No cost EMI			25/mo ₹47,250	>	
12 months No cost EMI			08/mo ₹38,500	>	
6 months No cost EMI		63	67/mo £28,000	>	
To be		one-time pa all plans	yment		
Add a re	ferral code)		APPLY	

PHYSICSLVE

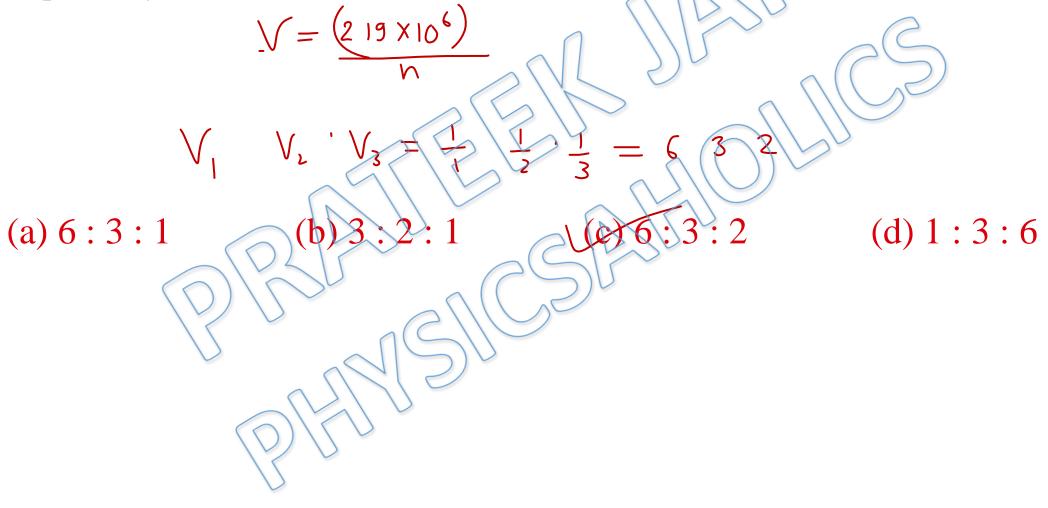
Use code PHYSICSLIVE to get 10% OFF on Unacademy PLUS.

	PLUS	ICONIC *		
S	India's Be	est Educators		
8	Interactiv	ve Live Classes		
3	Structure	d Courses & PDFs		
S e	Live Tests & Quizzes			
- 492×	Personal	Coach		
×	Study Plo	inner		
A740.23				
24 months		₹2,100/mo	>	
No cost EMI		+10% OFF ₹50,400		
18 months		₹2,363/mo	>	
No cost EMI		+10% OFF ₹42,525		
12 months		₹2.888/maa		
No cost EMI		₹2,888/mo +10% OFF ₹34,650	>	
NO COST EMI		+10% OFF (34,630		
6 months		₹4,200/mo		
No cost EMI		+10% OFF ₹25,200	>	
To be	e paid as c	ı one-time payment		
	Viev	v all plans		
Awesom	e! PHYSIC	SLIVE code applied	×	

DPP- 1 Bohr Model : Bohr Model, Energy of Atom, Ionisation Energy, Excitation Energy By Physicsaholics Team

Q1) Which of the following parameters are the same for all hydrogen-like atoms and ions in their ground states ?

っち


(a) radius of the orbit $\forall \propto \frac{h^2}{2}$ (b) speed of the electron $\forall \propto \frac{2}{h}$ (c) energy of the atom $\exists \propto \frac{2^2}{h^2}$ (d) orbital angular momentum of the electron Q2) The radius of electron's second stationary orbit in Bohr's atom is R. The radius of the third orbit will be-

	$\gamma = \gamma_{o} n^{2}$	CS
	$Y_2 = 4Y_0 = R$	
	$\gamma_3 = 9 \gamma_0 = \frac{9 R}{4}$	20
(a) 3R	(b) 2.25 R (c) 9 R	(d) R/3
	OHNOU	
	\square	

Q3) The ratio of the area of orbit of first excited state of electron to the area of orbit of ground level, for hydrogen atom, will be -

 $\gamma = \gamma_0 n^2$ $\gamma = \gamma_0 \times \gamma$ TT 6 X AOXIE 16:1 (a) 2 : 1 (H V)

Q4) The ratio of velocities of electron in H-atom in its first, second & third orbit respectively will be -

Q5) The kinetic energy of an electron in second Bohr orbit of hydrogen atom will be

(136ev) $KF = (13 \text{ (ev)} \frac{z^2}{n^2})$ n2 13 (ev 3.4 eV (b) 6.8 eV (a) 13.6 eV (d) 1.7 eV Q6) Total energy of electron in the first orbit of hydrogen atom is equal to the -

-13 6eV

(a) total energy of electron in 2nd orbit of He^+ (b) total energy of electron in 3rd orbit of He^+ (c) total energy of electron in 2nd orbit of Li^{++} (d) total energy of electron in 4th orbit to Li^{++}

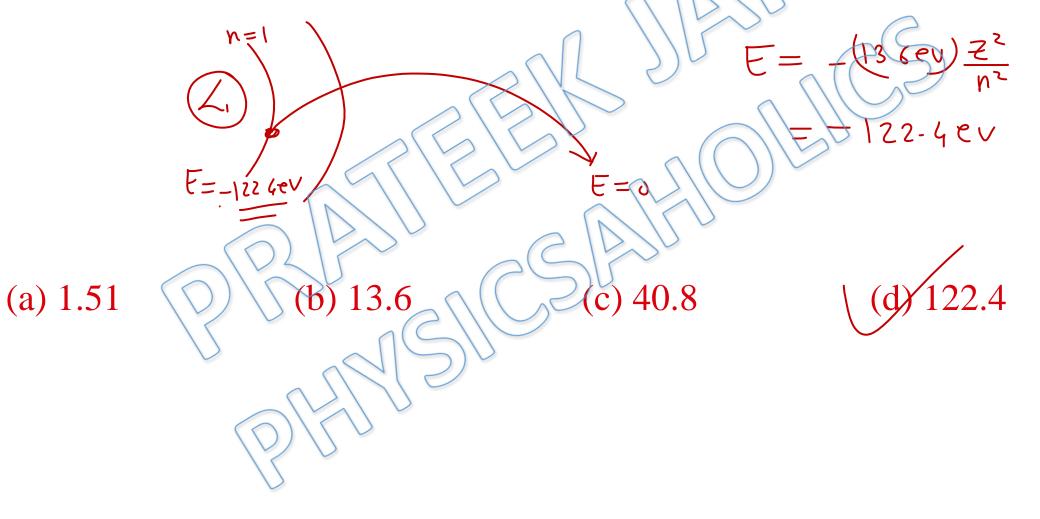
 $F = (-13 \text{ ev}) \frac{z^2}{10^2}$

Q7) The energy of an electron in the first Bohr orbit for hydrogen is -13.6 eV. Which one (s) of the following is (are) possible excited state (s) for electrons in Bohr orbits of hydrogen –

1.7 eV

(d) 13.6 eV

_ 136ev

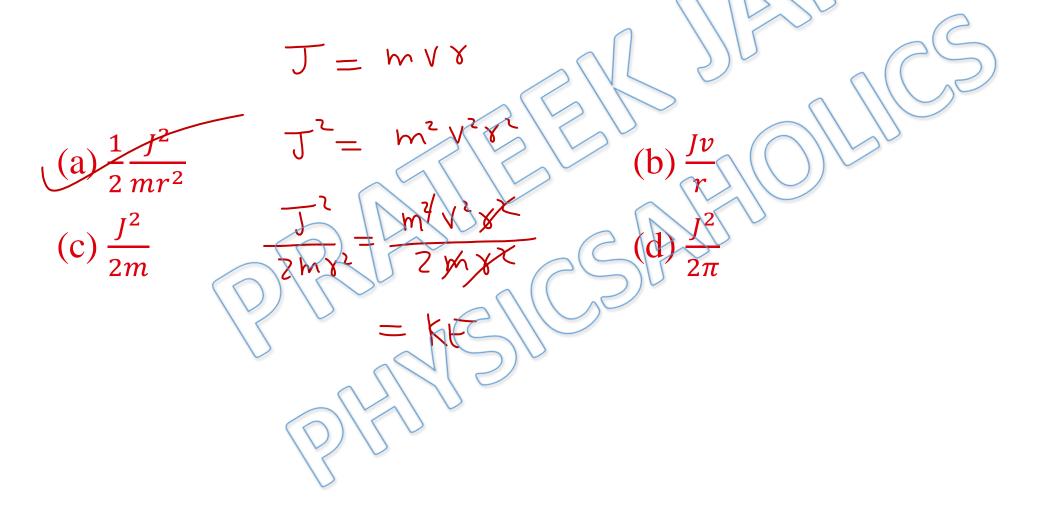

– 6.8 eV

F =

Q8) The binding energy of the hydrogen atom in the first excited state is –

n=90

E=0 (te) (c) 3.40 eV (a) 13.6 eV b) 10.2 eV (d) 1.51 eV Q9) As per Bohr model, the minimum energy (in eV) required to remove an electron from the ground state of doubly ionized Li atom (Z = 3) -



Q10) When a hydrogen atom is raised from the ground state to an excited state -

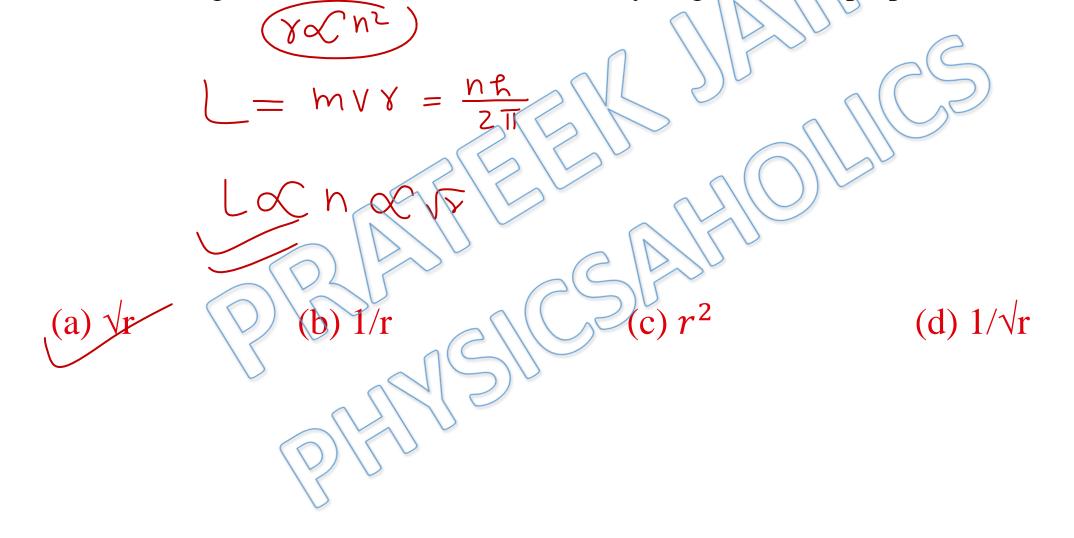
 $PF = -\left(\frac{27 \ 2 \ ev}{n^2}\right)P$ (a) the P.E. decreases and K.E. increases (b) the P.E. increases and K.E. decreases (c) both K.E. and P.E. increases (d) both K.E. and P.E. decrease

 $KE = \frac{13 \text{ GeV}}{n^2}$

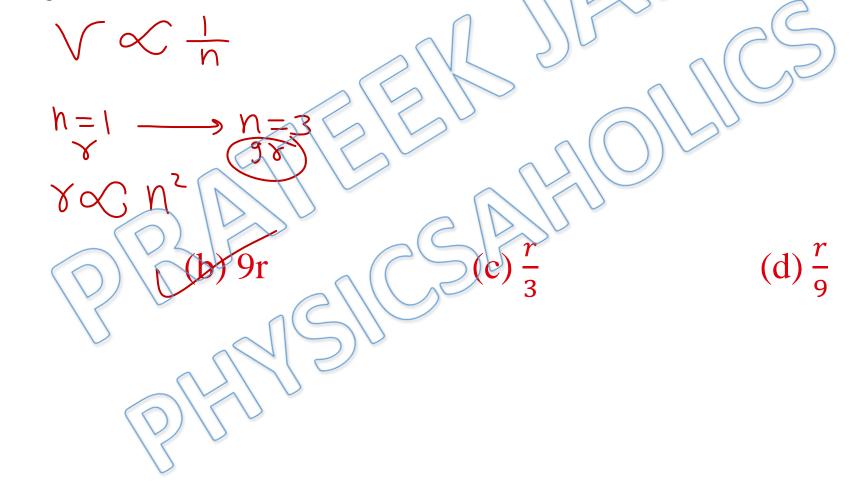
Q11) The angular momentum of an electron in a given orbit is J. Its kinetic energy will be -

Q12) From Bohr's theory the product of the radius and the velocity of the electron in different orbits is

5


ho? Y'z

(a) constant
(b) proportional to the square root of radius
(c) proportional to the radius
(d) proportional to the square of the radius


 $mVY = \frac{nR}{2\pi}$

VY

Q14) The electron in a hydrogen atom jumps from ground state to the higher energy state where its velocity is reduced to one-third its initial value. If the radius of the orbit in the ground state is r, the radius of new orbit will be -

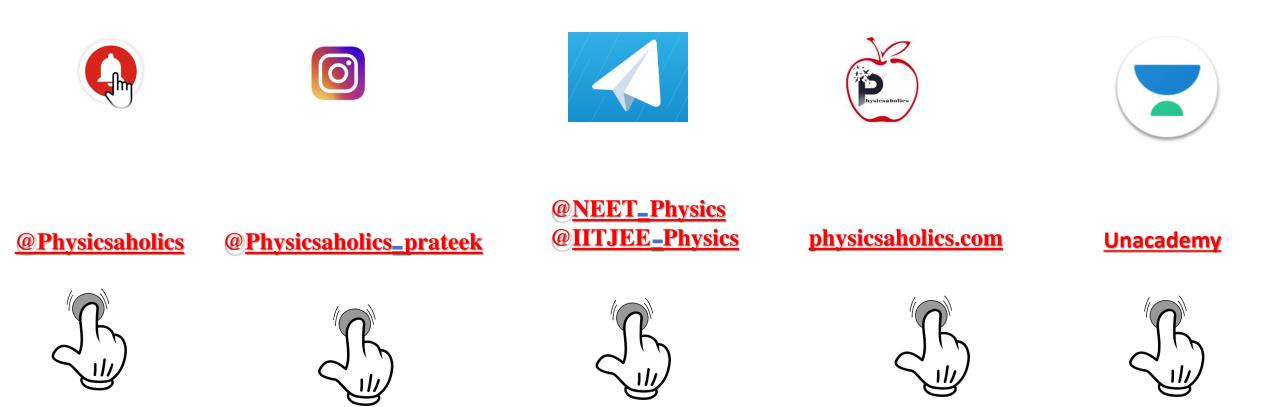
(a) 3r

Q15) Which of the following products in a hydrogen atom are independent of the principal quantum number n? The symbols have their usual meanings ?

For Video Solution of this DPP, Click on below link

Video Solution on Website:-

https://physicsaholics.com/home/courseDetails/46


Video Solution on YouTube:-

https://youtu.be/1yehhC5DbsU

Written Solution on Website:-

https://physicsaholics.com/note/notesDetalis/19

